TSTP Solution File: SET201^5 by Duper---1.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Duper---1.0
% Problem  : SET201^5 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : duper %s

% Computer : n026.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 14:46:02 EDT 2023

% Result   : Theorem 4.55s 4.80s
% Output   : Proof 4.55s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem    : SET201^5 : TPTP v8.1.2. Released v4.0.0.
% 0.00/0.14  % Command    : duper %s
% 0.12/0.36  % Computer : n026.cluster.edu
% 0.12/0.36  % Model    : x86_64 x86_64
% 0.12/0.36  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.36  % Memory   : 8042.1875MB
% 0.12/0.36  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.36  % CPULimit   : 300
% 0.12/0.36  % WCLimit    : 300
% 0.12/0.36  % DateTime   : Sat Aug 26 09:15:48 EDT 2023
% 0.12/0.36  % CPUTime    : 
% 4.55/4.80  SZS status Theorem for theBenchmark.p
% 4.55/4.80  SZS output start Proof for theBenchmark.p
% 4.55/4.80  Clause #0 (by assumption #[]): Eq
% 4.55/4.80    (Not
% 4.55/4.80      (∀ (X Y Z : a → Prop),
% 4.55/4.80        And (∀ (Xx : a), X Xx → Y Xx) (∀ (Xx : a), Z Xx → cV Xx) → ∀ (Xx : a), And (X Xx) (Z Xx) → And (Y Xx) (cV Xx)))
% 4.55/4.80    True
% 4.55/4.80  Clause #1 (by clausification #[0]): Eq
% 4.55/4.80    (∀ (X Y Z : a → Prop),
% 4.55/4.80      And (∀ (Xx : a), X Xx → Y Xx) (∀ (Xx : a), Z Xx → cV Xx) → ∀ (Xx : a), And (X Xx) (Z Xx) → And (Y Xx) (cV Xx))
% 4.55/4.80    False
% 4.55/4.80  Clause #2 (by clausification #[1]): ∀ (a_1 : a → Prop),
% 4.55/4.80    Eq
% 4.55/4.80      (Not
% 4.55/4.80        (∀ (Y Z : a → Prop),
% 4.55/4.80          And (∀ (Xx : a), skS.0 0 a_1 Xx → Y Xx) (∀ (Xx : a), Z Xx → cV Xx) →
% 4.55/4.80            ∀ (Xx : a), And (skS.0 0 a_1 Xx) (Z Xx) → And (Y Xx) (cV Xx)))
% 4.55/4.80      True
% 4.55/4.80  Clause #3 (by clausification #[2]): ∀ (a_1 : a → Prop),
% 4.55/4.80    Eq
% 4.55/4.80      (∀ (Y Z : a → Prop),
% 4.55/4.80        And (∀ (Xx : a), skS.0 0 a_1 Xx → Y Xx) (∀ (Xx : a), Z Xx → cV Xx) →
% 4.55/4.80          ∀ (Xx : a), And (skS.0 0 a_1 Xx) (Z Xx) → And (Y Xx) (cV Xx))
% 4.55/4.80      False
% 4.55/4.80  Clause #4 (by clausification #[3]): ∀ (a_1 a_2 : a → Prop),
% 4.55/4.80    Eq
% 4.55/4.80      (Not
% 4.55/4.80        (∀ (Z : a → Prop),
% 4.55/4.80          And (∀ (Xx : a), skS.0 0 a_1 Xx → skS.0 1 a_1 a_2 Xx) (∀ (Xx : a), Z Xx → cV Xx) →
% 4.55/4.80            ∀ (Xx : a), And (skS.0 0 a_1 Xx) (Z Xx) → And (skS.0 1 a_1 a_2 Xx) (cV Xx)))
% 4.55/4.80      True
% 4.55/4.80  Clause #5 (by clausification #[4]): ∀ (a_1 a_2 : a → Prop),
% 4.55/4.80    Eq
% 4.55/4.80      (∀ (Z : a → Prop),
% 4.55/4.80        And (∀ (Xx : a), skS.0 0 a_1 Xx → skS.0 1 a_1 a_2 Xx) (∀ (Xx : a), Z Xx → cV Xx) →
% 4.55/4.80          ∀ (Xx : a), And (skS.0 0 a_1 Xx) (Z Xx) → And (skS.0 1 a_1 a_2 Xx) (cV Xx))
% 4.55/4.80      False
% 4.55/4.80  Clause #6 (by clausification #[5]): ∀ (a_1 a_2 a_3 : a → Prop),
% 4.55/4.80    Eq
% 4.55/4.80      (Not
% 4.55/4.80        (And (∀ (Xx : a), skS.0 0 a_1 Xx → skS.0 1 a_1 a_2 Xx) (∀ (Xx : a), skS.0 2 a_1 a_2 a_3 Xx → cV Xx) →
% 4.55/4.80          ∀ (Xx : a), And (skS.0 0 a_1 Xx) (skS.0 2 a_1 a_2 a_3 Xx) → And (skS.0 1 a_1 a_2 Xx) (cV Xx)))
% 4.55/4.80      True
% 4.55/4.80  Clause #7 (by clausification #[6]): ∀ (a_1 a_2 a_3 : a → Prop),
% 4.55/4.80    Eq
% 4.55/4.80      (And (∀ (Xx : a), skS.0 0 a_1 Xx → skS.0 1 a_1 a_2 Xx) (∀ (Xx : a), skS.0 2 a_1 a_2 a_3 Xx → cV Xx) →
% 4.55/4.80        ∀ (Xx : a), And (skS.0 0 a_1 Xx) (skS.0 2 a_1 a_2 a_3 Xx) → And (skS.0 1 a_1 a_2 Xx) (cV Xx))
% 4.55/4.80      False
% 4.55/4.80  Clause #8 (by clausification #[7]): ∀ (a_1 a_2 a_3 : a → Prop),
% 4.55/4.80    Eq (And (∀ (Xx : a), skS.0 0 a_1 Xx → skS.0 1 a_1 a_2 Xx) (∀ (Xx : a), skS.0 2 a_1 a_2 a_3 Xx → cV Xx)) True
% 4.55/4.80  Clause #9 (by clausification #[7]): ∀ (a_1 a_2 a_3 : a → Prop),
% 4.55/4.80    Eq (∀ (Xx : a), And (skS.0 0 a_1 Xx) (skS.0 2 a_1 a_2 a_3 Xx) → And (skS.0 1 a_1 a_2 Xx) (cV Xx)) False
% 4.55/4.80  Clause #10 (by clausification #[8]): ∀ (a_1 a_2 a_3 : a → Prop), Eq (∀ (Xx : a), skS.0 2 a_1 a_2 a_3 Xx → cV Xx) True
% 4.55/4.80  Clause #11 (by clausification #[8]): ∀ (a_1 a_2 : a → Prop), Eq (∀ (Xx : a), skS.0 0 a_1 Xx → skS.0 1 a_1 a_2 Xx) True
% 4.55/4.80  Clause #12 (by clausification #[10]): ∀ (a_1 a_2 a_3 : a → Prop) (a_4 : a), Eq (skS.0 2 a_1 a_2 a_3 a_4 → cV a_4) True
% 4.55/4.80  Clause #13 (by clausification #[12]): ∀ (a_1 a_2 a_3 : a → Prop) (a_4 : a), Or (Eq (skS.0 2 a_1 a_2 a_3 a_4) False) (Eq (cV a_4) True)
% 4.55/4.80  Clause #14 (by clausification #[11]): ∀ (a_1 : a → Prop) (a_2 : a) (a_3 : a → Prop), Eq (skS.0 0 a_1 a_2 → skS.0 1 a_1 a_3 a_2) True
% 4.55/4.80  Clause #15 (by clausification #[14]): ∀ (a_1 : a → Prop) (a_2 : a) (a_3 : a → Prop), Or (Eq (skS.0 0 a_1 a_2) False) (Eq (skS.0 1 a_1 a_3 a_2) True)
% 4.55/4.80  Clause #16 (by clausification #[9]): ∀ (a_1 a_2 a_3 : a → Prop) (a_4 : a),
% 4.55/4.80    Eq
% 4.55/4.80      (Not
% 4.55/4.80        (And (skS.0 0 a_1 (skS.0 3 a_1 a_2 a_3 a_4)) (skS.0 2 a_1 a_2 a_3 (skS.0 3 a_1 a_2 a_3 a_4)) →
% 4.55/4.80          And (skS.0 1 a_1 a_2 (skS.0 3 a_1 a_2 a_3 a_4)) (cV (skS.0 3 a_1 a_2 a_3 a_4))))
% 4.55/4.80      True
% 4.55/4.80  Clause #17 (by clausification #[16]): ∀ (a_1 a_2 a_3 : a → Prop) (a_4 : a),
% 4.55/4.80    Eq
% 4.55/4.80      (And (skS.0 0 a_1 (skS.0 3 a_1 a_2 a_3 a_4)) (skS.0 2 a_1 a_2 a_3 (skS.0 3 a_1 a_2 a_3 a_4)) →
% 4.55/4.80        And (skS.0 1 a_1 a_2 (skS.0 3 a_1 a_2 a_3 a_4)) (cV (skS.0 3 a_1 a_2 a_3 a_4)))
% 4.55/4.80      False
% 4.55/4.80  Clause #18 (by clausification #[17]): ∀ (a_1 a_2 a_3 : a → Prop) (a_4 : a),
% 4.55/4.80    Eq (And (skS.0 0 a_1 (skS.0 3 a_1 a_2 a_3 a_4)) (skS.0 2 a_1 a_2 a_3 (skS.0 3 a_1 a_2 a_3 a_4))) True
% 4.55/4.81  Clause #19 (by clausification #[17]): ∀ (a_1 a_2 a_3 : a → Prop) (a_4 : a),
% 4.55/4.81    Eq (And (skS.0 1 a_1 a_2 (skS.0 3 a_1 a_2 a_3 a_4)) (cV (skS.0 3 a_1 a_2 a_3 a_4))) False
% 4.55/4.81  Clause #20 (by clausification #[18]): ∀ (a_1 a_2 a_3 : a → Prop) (a_4 : a), Eq (skS.0 2 a_1 a_2 a_3 (skS.0 3 a_1 a_2 a_3 a_4)) True
% 4.55/4.81  Clause #21 (by clausification #[18]): ∀ (a_1 a_2 a_3 : a → Prop) (a_4 : a), Eq (skS.0 0 a_1 (skS.0 3 a_1 a_2 a_3 a_4)) True
% 4.55/4.81  Clause #22 (by superposition #[20, 13]): ∀ (a_1 a_2 a_3 : a → Prop) (a_4 : a), Or (Eq True False) (Eq (cV (skS.0 3 a_1 a_2 a_3 a_4)) True)
% 4.55/4.81  Clause #23 (by clausification #[22]): ∀ (a_1 a_2 a_3 : a → Prop) (a_4 : a), Eq (cV (skS.0 3 a_1 a_2 a_3 a_4)) True
% 4.55/4.81  Clause #24 (by superposition #[21, 15]): ∀ (a_1 a_2 a_3 a_4 : a → Prop) (a_5 : a), Or (Eq True False) (Eq (skS.0 1 a_1 a_2 (skS.0 3 a_1 a_3 a_4 a_5)) True)
% 4.55/4.81  Clause #25 (by clausification #[19]): ∀ (a_1 a_2 a_3 : a → Prop) (a_4 : a),
% 4.55/4.81    Or (Eq (skS.0 1 a_1 a_2 (skS.0 3 a_1 a_2 a_3 a_4)) False) (Eq (cV (skS.0 3 a_1 a_2 a_3 a_4)) False)
% 4.55/4.81  Clause #26 (by forward demodulation #[25, 23]): ∀ (a_1 a_2 a_3 : a → Prop) (a_4 : a), Or (Eq (skS.0 1 a_1 a_2 (skS.0 3 a_1 a_2 a_3 a_4)) False) (Eq True False)
% 4.55/4.81  Clause #27 (by clausification #[26]): ∀ (a_1 a_2 a_3 : a → Prop) (a_4 : a), Eq (skS.0 1 a_1 a_2 (skS.0 3 a_1 a_2 a_3 a_4)) False
% 4.55/4.81  Clause #28 (by clausification #[24]): ∀ (a_1 a_2 a_3 a_4 : a → Prop) (a_5 : a), Eq (skS.0 1 a_1 a_2 (skS.0 3 a_1 a_3 a_4 a_5)) True
% 4.55/4.81  Clause #29 (by superposition #[28, 27]): Eq True False
% 4.55/4.81  Clause #30 (by clausification #[29]): False
% 4.55/4.81  SZS output end Proof for theBenchmark.p
%------------------------------------------------------------------------------